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RECURSIVE FILTERING ALGORITHMS FOR SHEP TRACKING

INTRODUCTION

Existing naval forces can be deployed and concentrated more effectively with a better
knowledge of current and probable future locations of the surrounding shipping. Making
good use of available surveillance assets in performing this tracking function requires the
corTelation of data coming from many sources at unpredictable times. Because of the
large volume of such data, there is interest in creating a capability for automatic ship

* tracking using sporadic and noisy observations of position only. This report investigates
the use of certain recursive filtering techniques, in particular ones based on Kalman filters,
for this purpose. This work provides alternatives to existing algorithms for possible use
in automatic ship tracking.

The ship tracking algorithms were designed for these anticipated uses:

Track Generation (Kalman Filter)

* Estimation of present location

* Prediction of future locations

* Generation of "gates" (position confidence regions) for report-to-track cor-
relation at present time in a multitarget environment.

Track Smoothing (Bayesian Smoother)

* Generation of "gates" for report-to-track correlation at previous times (i.e.,
for out-of-sequence reports) in a multitarget environment

* Estimation of previous locations (i.e., track history).

As input data, these algorithms require reports specifying time of observation, observed
ship position, and a covariance matrix for the errors in the observed position (or equiva-
lent information in the form of a confidence region, containment ellipse, etc.). If an ob-
served velocity is also reported at a given observation time, it also must be accompanied
by a corresponding error covariance matrix in order to be utilized. Because of the adapt-
wive nature of the Kalman filter used for track generation, no additional information (such
as estimated heading, speed, or maneuverability) need be specified externally, and a track
can be initiated with a single observation. The time intervals between successive observa-
tions may be variable. The input reports are normally processed recursively in their nat-
ural time sequence and need not be recalled after their initial use. The incorporation of
an out-of-sequence report, however, requires that the intervening reports be available for
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reprocessing. As output, these algorithms provide (a) estimates of ship position, at present
or future times for the track generator and at past times for the smoother, (b) er )r co.
variance matrices, or e-.uivalent containment ellipses, that correspond to these estimates.
The track generation algorithm also provides estimates of average velocity (two compo-
nentsy and maneuverability (two parameters), which are revised after the receipt of each
observation.

There are two salient features of these particular tracking algorithms. First, they are
based on a continuous-time ship motion model. This feature allows observations that
are unevenly spaced in time to be processed in a statistically consistent manner by the
track generator. It also enables the smoother to consistently interpolate the tracks for
processing out-of-sequence observations. Second, the ship motion is approximated in
this model as the vector sum of a constant average velocity and a two-dimensional
Brownian motion. These two velocity terms are processed concurrently but separately
by the track generation algorithm. A standard Kalman filter is used to estimate the average
velocity with the position. Another recursive procedure is used to estimate the intensity
statistics of the Brownian motion from the "residuals" of this Kalman filter. There
estimates then are used as "driving noise" parameters in the Kalman filter to adaptively
modify its subsequent operation. The purpose of this adaptive modification of the basic
Kalman filter algorithm is to make it flexible enough to track a wide variety of ship
motions without prior external specification of the motion type.

The track generation algorithm operates recursively in time. Basically it propagates
the track forward between observations by dead reckoning and updates it whenever a
new report is received. The track smoothing algorithm operates recursively in reverse
time using the output of the track generator (position estimate and covariance matrix) as
input. These two algorithms are first developed here for tracking on a planar surface.
Then they are extendt to tracking on the surface of a sphere, both in geographical co-
ordinates of latitude and longitude and in three-dimensional rectilinear coordinates. The
algorithms for the planar case are implemented as experimental Fortran programs and
tested on both realistic and idealized ship tracks.

SOME COMMENTS ON RECURSIVE FILTERING TERMINOLOGY

Let x be a state vector describing a ship's location such that

x(t) = F(t)x(t) + w(t), (1)

where F is a matrix time function and w is a Gaussian white noise process with mean
i(t) and (known) normalized covariance matrix Q(t). This normalization refers to the
limiting value of

1 E[w(t + ) - zi(t + A) - w(t) + ii(t)] [w(t + A) - w(t + A) - w(t) + iw (t)]T.

The state vector x will contain two position components defining the ship's location, and
possibly other components, such as velocity, as well. At sporadic times ti, i = 0, 1, 2,
noisy observations zi of x(t,) are received such that

I
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Z; = Hix(t,) + ni, (2)

where Hi is a matrix and {nj) is a sequence of independent random vectors such that

ni is Normal t0, Ril

and is statistically independent of w. The obeys:vation times are ordered such that
i > j ti > t- but are otherwise arbitrary. Abc, a prior probability distribution is as-
signed to the state vector at the initial observation time such that

x(to) is Normal [Io, Mo * (3)

For any pair of times t and T such that T > t > to, the conditional probability dis-
tribution of x(t), given the prior distribution and all the observations contained in the
interval [to, T], happens to be multivariate Normal. The moments Jetermining this dis-
tribution are denoted as follows.

Definitions

17(T, t) = Efx(t)] givenalldatain [toT]

K(T, t) = E{[x(t) - 17(T, t) x(t) - B7T, t)JT} given all data in [to, T]

x(') = i7(t, t) = E[x(t)J given all previous data

P(t) = K(t, t) = E [x(t) - .i(t)I[x(t) - k(t) T givenall prr-ious data

Capital letters denote matrices, and lower case ones vectors; AT denotes the transpose of
A; E denotes expected value.

The Kalman filter corresponding to Eqs. (1), (2), and (3) generates statistics re-
cursively from the observations. These statistics are, at any time t, an estimate of the
state vector x(t) and an error covariance matrix for this estimate. These statistics have
the property that

x(t) = filter estimate of x(t)

and

P(t) = filter error covariance matrix for x(t) .

Hence, this Ka man filter may be regarded as a real-time conditional probability computer.
Time t may b1 at or between observation times.

Another recursive algorithm, called the Bayesian smoother for Eqs. (1) through (3),
can be used in conjunction with the Kalman filter algorithm to compute i7(T, t) and
K(T, t). Th-e details of both algorithms are shown in Appendix A. i?(T, t) is called the
smoothed 'stimate of the state vector x(t) at time T, and K(T, t) is called the error
covariance matrix of i7(T, t).

3
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In the limiting case where det [M.0 - - for the prior distribution of x(t0 ) (i.e., a
"flat prior"), i7(T. t) and K(T. t) may be interpreted as the first and second moments,
respectively, of the normalized likelihood function (i.e., integrates to unity) of x(t) for
the observation values received and the motion model postulated. This normalized like-
lihood function is also multivariate Normal. No prior distribution for x(10 ) is involved in
this interpretation, which includes the Kalman filter statistics i(t) and P(t) as special
cases of 1i(T, t) and K(T, t).

'4~~~~~~~~~~~I

UNDERLYING SHIP MOTION MODEL

The tracking algorithms are based on the Kalman filter and Bayesian smoother for a
specific motion model in which a ship's motion is approximated as the vector sum of a
constant (average) velocity and a two-dimensional (random) Brownian motion. The in-
tensity of the Brownian motion, which is actually specified by three independent pararn-
eters, is selected to correspond to the extent of maneuvering performed by the ship with
respect to a constant-speed, great-circle course. This particular motion model was selected
as a basis for these tracking algorithms for the following reasons.

* The general recursive filtering algorithms of Appendix A reduce to particularly
simple forms for this model if the earth's curvature is neglected. Modifications to account
for this curvature are also relatively simple.

* The motion model has sufficient flexibility to give at least a rough approxima-
tion to a wide variety of ship motions.

* The smoothed tracks generated are greats circles between smoothed observation
points.

* Unevenly spaced observations can be accommodated in a systematic way.

* Tracks can be initiated with a single observation, so no qualitative distinction
between tracks and unassociated observations is necessary. Track initiation and observation-
to-track association can be regarded as special cases of track-to-track association.

* The linear size of the containment ellipse generated by the corresponding Kalman
MTfer (i.e., the track propagation algorithm) often grows only as the square root of the
time elapsed since the last observation. Since the gates used in observation-to-track asso-
ciation algorithms often correspond roughly to these containment ellipses, this is possibly
an important element in achieving good oh.servation-to-track association performance with
sparse observations at high shipping densities.

The execution of the tracking algorithms based on this model requires that each re-
i port of a ship's location specify the time, the observed position, and the (2 X 2) covanance

matrix of the observation errors. The average velocity and Brownian motion intensity
parameters are estimated from the observation data and need not be specified externally.
As output, the algorithms are capable of providing the following information about a ship

* at any given time.

4
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Track. Generation Algorithm (Kalmnan Filter)

* Estimates of current position and average velocity (four components
altogether)

* A (4 X 4) covariance matrix for the errors in these estimates

* An estimate of the three Brownian motion intensity parameters describingI the ship's maneuvering.

Track Smoothing Algorithm

* Estimates of position at any past time

* A (2X 2) covariance matrix for the errors in these estimates.

The information concerning the ship's position is the output of primary importance.
Estimates of average velocity and maneuvering are included chiefly for the ulterior pur-
poses of estimating future and past positions.

This motion model is tailored for tracking with position-only observations. It is also
possible to incorporate independent velocity observations into the tracking procedures,
but this is not a completely straightforward extension. The difficulty is basically that a
ship's velocity in this model has two components-an average velocity, which is being
estimated, and a completely random velocity, which is not. l0hat is observed, however,
is the sum of these two components; thus some additional assumption must be specified
about the relation of the observed velocity to the constant-velocity component of the
model. Possible procedures for making such a modification are discussed in Appendix B.

TRACKING OF PLANAR MOTION

It is convenient to begin the detailed development of these tracking algorithms with
the consideration of a special case. In this case a ship's motion is restricted to a portion

i of the earth's surface which is small enough to be Adequately approximated by a plane.
I The resulting algorithms are thus easier to understand and can easily be generalized to

algorithms for tracking on a sphere. In fact, this generalization is basically just a matter
of rotating the coordinate axes at each time of interest, usually an observation time, to
realign the y axis with local north.

* In this planar context, an approximation of the ship's motion is described by a state
vector consisting of two rectangular position coordinates, x and y, which satisfy the dif-
ferential equation

(4)
* LYJL~~~~~~~~~~WYJ

where

L 1_. ....... .*.... .**..* . .. *- .- .- . *...... ._.,..._... 
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is a two-dime-isional Gaussian white noise process with constant mean

(the ship's average velocity) and constant normalized covariance matrix Q
(representing maneuvering about this average velocity) such that

qxx i qxv
Q = _ __ I_ _ .

It is assumed that bias has been removed from the position observations so that the obser-
vation at time ti can reasonably be approximated as the 2-vector

ZLi X (ti) nxi
___ = ___ + ___ .
_ZY; _ _ ' ti)__nyi_

where

nx.
- _ _ is a zero-mean bivariate Normal random variable with covariance matrix Ri

_ ny; _such that

I -1y[ rxx, I rYi
rxyi Iryy,,J

The Q and Ri matrices have been kept deliberately in general two-dimensional form. No
significant computational reduction appears to be possible, unless the observation errors
are assumed to be statistically independent in those rotated coordinates which also diag-
onalize the Q matrix. Although such an assumption may be reasonable in some situa-
tions, it might constitute a serious inefficiency in the use of the data when the "error
ellipses" of successive position observations are long and narrow and differ widely in
orientation, which is a case of major interest here.

Track Generation-Adaptive Kalman Filter

Although a Kalman filter for Eqs. (4) and (5) could be constructed directly, it could
not be implemented in practice for position estimation because the average velocity com-
ponents u and v and the Brownian motion intensity matrix Q are not known. They must

6
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be estimated from the observation data as the track is bring generated. It is assumed,
however, that the covariance matrix of each observation error is known to the tracker
(i.e.. both the observed position and error covariance matrix are necessary parts of the
input data).

If the average velocity components are adjoined to the state vector of the ship 'no-
tion model, the motion can be described in terms of the augmented state vector by the
differential equation

~~~~~ x 0 1 0 X W xY~~~~ [ 11 Y
wthere we and WY now denote zero-mean noise componentW and Q denotes the correspond-
ing 2 X 2 partition of the 4 X 4 driving noise matrix, the other components of which are
zero. Furthermore, the position observations can also be expressed in terms of this aug-
mented state vector as

-…~~~~~4 - -- --- + - -- (7)

Zyj10 1 0 0 1 (t)

i Z i J L 1 

Hence, if Q were known, a and o could be estimated concurrently with x and y by the
use of the K~alxnan fsilter corresponding to Eqs. (6) and (7). As an ad hoc procedure based
on this concept, this filtering algorithm is used as if Q were a known constant matrix,
except that the value of Q used in these computations is updated at each observation
time by another recursive algorithm The initial estimates of u, v, and Q are all taken as
zero, which in effect gives priority to estimating the average velocity (u, v) over estimating
the "maneuvering matrix"' Q.

The Basic Kafrrnan Filter

If Q is treated as a known constant for the moment, the evolution of the conditional
mean and covariance matrix of the state vector between generic observation times s and
t,+l can be described by specializing the results of Appendix A to Eqs. (6) and (7), giving
the following differential equations:

7

i

I

i

I

I

II

I
t

I

tI
I

I

I
I
Ie

I

I

i
rI

II

Ii

�'Ll_ _.-A
. -- - . .

. . . I -24INihk- .- --

Nuirlm



. I. -~ - -.. ..- " 1--*- - . .-*.- . - - *.- ** - . .. I *- -*' -.*--1 1-0**- 4FANRC *..1 ~ - -,4

WARREN W. WILLMAN

U = 0

D=- 0

Pxx = 2Pxu + qxx

Pxy = Pxv + Pyu + qxy

Pyy = 2 Pyv + qyy

Pmu = Puu

Pxv = Puu

Pvu = Puv

Pyv = PUv

Puu = 0

Puv = 0

Pw = 0.
In this case, the differential equations can be integrated analytically to give

i(t- 1) = tt

y(t7~l =(tt)
Ut I ) I ~t

6(t,+ ) Dtt)

mxy = Pxy ti

my=pyy~t

mXU = Pxu(ti'

mXV = PxU(ti-

"Iyu = PyU (tj

myV = Pyv(ti

mUU = PUUVt

Muv = PuX~i

mWv = PvU(t'.

+ TU (t;)

+ rD(tt)

f)

't)

't)

t+)

tj )

rF)

I*)

't) I

+ 2pXU(tl')T + puu(tt)r 2 + qxxr

+ [pX,(tt) + pyu(tt)17- + pUv(t*)T2 + gXYT

+ 2pyvltt)T + pvv(tt)r2 + qyyr

+ PUU(tt)r

+ PU,(tt)T

+pPUU(tt

+ PW(tt )T

8
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where r = t +1 - ti, and the m variables denote the corresponding components of the
P matrix at time t7+1. After the observation

zx(i +1)1

ZY(i +1)J

at time ti+I the conditional mean and covariance matrix components are updated ac-
cording to the equations

Lji+I [1F ]+ lrPxx Pxy *i( +1)-X(Li-+TiUj]

I L -Y Di L Py [ Zy(i + 1)- -ii Tti

uz+i] ~ 1 Pxu Pyu]
= + I -I

Lvi+1 _LU j Pxu I Pyvji+ 1

(i +1) - Xi - Toi]
R -+ I - -- ---- - Iv 

Zy i + 1) - 9; - TU;i

(22)

(23)

where the integer subscripts i and i + I indicate the value of variables at tt and tlT+I and
the P matrix components at t-++, are computed from the eqtation

I Pxy I Pxu I Pxu
I. … _ _I… _ _ _.1 - - -

I Pyy : Pyu : Pyv
I .- - -_ - … _ _ … _

I Pyu : Puuz Puv

I I I
I PYu I PUt' I PMv _

i+l*

-mXX ImX g I MXU
___ . ._ _ I. . _ _.1 _ _ _

MYI IY y y
…- -- --

m~y I myI IMXU I MYV I MUU I MVuu

mxx + rxx(i +1) I
X ---- - _- _ I

mXy + rXy(i + 1) I

XX MXy I MXU
X _ __. 1 

MXY I myy I myu

MXX I mxy
_ - - 1. _ _ 

mXY I myy
_ - - 1. - - -

MXU I myu

-MX I myU -

-1
MXY + rXy(i + 1)

myy + ryy(i + 1)

I m,
I _ _

, my:]
(24)

Once the initial conditions are specified, Eqs. (8) through (24) define the track gen-
eration procedure under the assumption of known Q. A convenient practice for initiating
this procedure is to start tracking at time tt, immediately after the first observation, with
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x (to) Do 

I0(0) =ZY
(25)

, (t) = O

(t+)= O

P~x(to) = rxxo

Pxy (40) =rXY0

pyy(tO+) = ryyO (26)

Puu(to) = P"(tO) = -2 V2

all other components of P(t*) = 0O

where V is the (externally specified) average speed of ships covered by the tracking sys-
tem. It is possible to avoid specifying a value of V by using p.,(to) = pz,(t+) =c, which
corresponds to the use of a flat prior for the initial state vector to generate its normalized
likelihood function. This modification would make the tracking somewhat less efficient,
however, and is probably needless since a reliable estimate of V, or at leas: a finite upper
bound, would usually be available.

Adaptive Modification for Recursive Estimtation of Q

To account for unknown Q, note that the term

CZx(i + i~i -7ij

Zy (i + 1) - i; - 71

in Eqs. (22) and (23) can be expressed as

_ + r _ -_ _ _ + w dt +_____.
Yi - i9i v - Ui ft nyi + 1)

which, if Q were known, would have a zero mean and covariance matrix

I Tqxy I Tqxyy Frx>( +1) I rXy(i +1)1
1+0

10
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Furthermore, if Q were known and used in Eqs. (8) through (24), the vectors c

Lex(i+1)] FzX(i +1) - X; - TU1

Ey(i +1) LZY(U + 1) - Yi - rui

would be statistically independent, in which case a reasonable statistic Q (i + 1) for ap-
proximating Q at time t+4 would be given by the equations

&x(.i 1) = i + 1 + [eC2 - px(t7) - rxj]
4XX (i j J-1 I j X 

|qXYU- 1) i= + 1 [fxjyj -PXY(t)- tXyj]
j- 

and

4YY0 +) i + 1 J [e2_ - PYY(tJ)- rYYj],

where rj denotes tj - ti-1. These statistics cannot be used directly to estimate Q because
Q is needed to compute the e's and p's However, these statistics obey the following re-

E ~~cursion equations:

.X (i +) = 4x (j) + i [e(a+ 1) - MX - rXX(i+1) - 4XX()] (27)1. rex(L+ 1)e(i +1) -ms,, - r~,(i +1) - 1
xy( ++ 1) = 4 I + E+ 1)., l ' _ - 4rywi)] (28)

and

1 re(i + 1) - myy - ryy(i +1) 1
f l u 1~ = 5 A i l + I - _ _ _ _ _ _ _ _) q y ( j 2 9

qyyUi + 1) = 4yyY) + (i +1) L 7 -yytUJ (29)

where r, mxx, mxy and myy are defined as in Eqs. (8) through (24). As an ad hoc pro-
cedure, Eqs. (27) tirough (29) are used recursively to generate estimates of the compo-
nents of Q, starting with ix(o) = xy(o) = 4yy(o) = 0. It is also desirable to constrain
these estimates so that they form a positive semidefinite matrix which is diagonalized by
a rotation to coordinates aligned with the estimated average velocity vector (i.e., maneu-
vering is assumed symmetric about the ship's average heading). One way which has been
found to accomplish this is to use the following as estimates for the time interval (t;, t,+,)
in the context of Eqs. (8) through (24):

11
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qxX 2 [ + _2 t e X] (30)

qxy = i+ V \ (31)

and

qY = U - + i , (32)

where

= max {0,[q4u(i) + 4yy(i)]) (33)

if H8ii DiI4XYMi > t

ig + D?
X= -E if JMu 4 XY(i) < -t (34)

U,22 + 2

+_0
Ubjj jxy (i) otherwise.

The justification for this procedure is given in Appendix C.

Final Algorithm

This completes the specification of the recursive track generation procedure. To sum-
marize this procedure, tracking begins immediately after the initial observation at time to with
initial conditions given by Eqs. (5), (25), (26), and &..(o) = ixy(o) = 4yy(O) - 0. From
time ti' to time t+ 1, i = 0, 1, ... , the track is generated as follows:

Track Propagation

* Generate qxx, qxy, qyy from qxX(i), &xy(i), 4yy(i) with Eqs. (30) through (34).

* Use these values in Eqs. (8) through (21) to generate R(t+ 1), q(t- 1),
zi(t-+i), D(t-+1), and the m's.

Track Updating

* Use these values of the m's in Eqs. (22) through (24) to generate the new
estimates 2ii+ I 9 i+l fil., +1 from the observations zx(i + 1), zy(i + 1).

12
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*Use Eqs. (27) through (29) to compute 4xx(i + 1), 4x~ + 1), 4yy(i + 1),I ~~where (as defined earlier) e( 1 ~i+)-L 

E,(i + 1) =Z 3,(i + 1) -9, rOi -.

Note that track initiation is accomplished with only one position observation in this
I ~ ~algorithm. Hence an unassociated observation can be regarded as a one-point track. In

this regard, it is perhaps helpful to consider a track as consisting of the time history of
the conditional mean and covariance matrix of the entire state vector, not just the time
history of i and 9. With this interpretation, no qualitative distinction between report-to-
track association and track-to-track association is necessary. The implementation of this
algorithm requires that a total of 17 quantities be carried, propagated, and updated for
each ship being tracked (i.e., the estimates i, 9, ri, 0, the 10 independent "p" compo-
nents of the corresponding covariance matrix, and the maneuvering parameter estimates

In actual operation, it might be well to reinitialize this tracking algorithm, perhaps
at the discretion of a human operator, if a sequence of consistently large residuals ex and

Cyare encountered for a given ship; such an event would imply an abrupt change in ma-
neuvering behavior. Another possibility would be to limit the i + 1 factor in Eqs. (27)
through (29) to some maximum to prevent the estimates of Q from depending too
heavily on old observations.

Prediction of Future Positions

Although the preceding algorithm is contemplated mainly for the updating of posi-
tion estimates after the receipt of an additional observation (one-point updating), it can
also be used for computing the conditional probability distribution, given all currently
available observation data, of a ship's position and velocity at a future time. If t, is the
time of the last observation, this can be done with the track propagation steps of the
above algorithm by regarding the future time in question as ti 4 l. The conditional dis-
tribution is then Normal with mean (predicted position and velocity)

Lbt7.1 )

i+ ~ ~~~~~~~~~~~~~~2

and covariance matrix M, as defined by Eqs. (12) through (21). Aside from its obvious
tactical value, this information can also be wsed for the consrtruction of position and/or

velocity gates in observation-to-track correlation; in the latter use, ti. 1 is the time of the
observation possibly being correlated. In either case, however, unless a new observation
is actually used to update the track, the "track updating" steps are not performed and

13
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any subsequent track propagation or updating proceeds from time t4 as if these comnputa-
tions had never taken place.I ~~~~Track Smoothing

In addition to keeping track of the conditional distribution of a ship's current posi-
tion and -velocity, it is occasionally useful to know the current distribution of its state

* ~~vector at a previous time as well (i~e., the smoothed track statistics i? and K). The main
use foreseen for this information is in observation-to-track association for out-of-6equence
observations. A smoothed track can be considerably more precise in practice than the

r ~~~~~past history of the track generated by the corresponding Kalmnan filter. This extra preci-
sion would enable out-of-sequence observations to be correlated to tracks more accurately

I

in areas of high shipping density.

[ ~~~~~~This track smoothing algorithm is the specialization of the generic Bayesian smoother
of Appendix A to the particular ship motion model adopted above. As a simplifying ap-
proximation, however, it is assumed that the current estimates of the velocity and ma-

neuvering parameters u, u, qxx, qxy,, and q3yy at the time of smoothing are the exact values
of these quantities-with one exception. The estimates qixx, q4xy, and 4y are first adjusted
according to Eqs. (30) through (34) to insure that the resulting "maneuvering" matrix, de-
noted by Q. is positive semidefinite. Then q is further modified to compensate for the
uncertainty in the velocity estimate, which is suppressed by the assumption that i! and 0
are precisely known constants. It has been found by numerical experimentation that this
modification can be achieved reasonably weli by replacing Q5 with a matrix Q such that

X l T) Pu,(71 
Q = r?+ (T -o) - - P- - T - j (35)

F ~~~~~where T is the time of smoothing and to is the time of track initiation. This simplification
makes it possible to use the Bayesfian smoother corresponding to Eqs. (4) and (5), rather
than to Eqs. (6) and (7), a reduction from four state variables to two. To implement
this smoother at time T requires that the quantities i(tt), 9(tt), px,(tt), pxy(t) and
pyy,(tj') be available for all observations times t, such that t4 ~ T.

j~~~~~~~~~~
For clariety orac protaation, h com ponetsfin (Toce aed denomtied asithere bypua

and those of K(T, t) by

1 4

r

iI

br.- __
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kxy(t) kyy(t)|

The variables i7 and K are continuous in t and obey the following differential equations
between generic observation times tj and ti., (T is considered a fixed parameter here):

ail t t))[ 1 +QP-(17 Es) (36)

and

K = QP-1 K + KP- 1Q Q, (37)
where

x(t) = L(tt) + (t- t,)u

y(t) = 9(tt+) + (t-tj)V

t I P 7(tj1 )P(t)=_____ + (t-t;)Q
alt iths LPsy(tj) Ipyy(tJ)

is the Kalman filter solution corresponding to Eq. (4). Equations (36) and (37) can be
integrated analytically in this case by noting that the quantities

and

P-1 (K - P)P-I

are constant on the interval (ti, t+ 1). Therefore, by continuity, 17(t) and K(tj can be
computed for any te (t;, t+4I) in terms of their values t7+I and K;+1 at time t; +l as
follows:

* Let

;+lI = P(tT+) = P(t16) + Q(ti+1 - t;), (38)
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-= (t- 1) = *(t) + u(ti+1 - tj) (39)

and

Y;+l = 9(t, 1j+I = 5(t0) + v(ti+1 - ti). (40j

* Compute

1(T, t) =[,- + P (1) M,+(+1 I ,+ I ] (41 )

and

K(T, t) = P(t) + P(t)M,+(K;+l - M1+4 )Mj-+P(t). (42)

Thus, it is easy to compute i? and K recursively, starting with

rL(T)
* Q(TT)= L] and K(T, T) = P(T)

Ly(T)-

and using Eqs. (38) through (42) on the interobservation intervals in reverse sequence.
Note that setting t = t; in Eqs. (40) and (41) gives i1 and K;. Equations (38) through
(42) can be computed component by component by first defining

T = t+l1 t;

and

S = t - t; ,

then computing

p1 = px(t' ) + qxxs,

P2 Pxy(tir) + qxys ,

p3= pyy(tt) + qyys,

ml pxx(t') + qxxr.

m2 -pxy(tt) + qyr,

m3 = pyy(tst) + qyyr,

16
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.i+i from Eq. (39),

and

yi from E-1. (40j,

and then computing

PI M3 -P2M2 P2 MI -PIm 2= (t) + plm3- P21 2 (x -3i) + 2 (43)I fm ml m3 - m2 m1m3 -m2

P2M3 - P3M2 P3M71 P2722y~~~~~(t) = y(t) + P~2 Pm _ _ )+ m P72(i -il 4)
Y M M + F~~ Gt~j-3~1 2 (.i1-yi+ 1), (44)mIm 3 - M2MIm

3 - M

kx) =(t) pX(t) + {kxx(ti+i)[p 1m3 - p2 m2 12 + 9kxy(ti+)[p2mI - pIm 2

f X [Dim3 - p2m2 1 + k,,YY(ti+l)Pp2 ml - P1m 212} {m i '2m ' (45)
Pt,,) +-p 

lm2 m3 - m2J
ky() =p~y(t) + {kxx(ti+1)[pIm3 -P 2m2 11P2m3 P3M21 + kxy(ti+l)

I.

X (P2m 1 -Plm 2 )(P 2m 3 -p 3 m 2 ) + (pIm 3 P2 M2)(P 3mI -P 2m2 )]

t+kyy(ti)1p2MI -pIm 2 1 P3mI P22M21} ( (46)tt~~~~~~~~~~~~~~~ m3 -mJ
and

kxx(t) = pyy(t) + {kxx(ti+I)[p 2 m3 - p 3m2J2 + 2kXY(ti+I)Ip3 m1 -P2"21

t X [p2m3 - p 3m2 1 + kyy(t; 0)[p3 m1 - P2m2 1]} ;; m} ' (47)

Note that Eqs. (43), (44), and the corresponding Kalman filter equations for x and yimply that the smoothed tracks (x, y) for this type of motion model have constant veloc-ities between observation times. The tracks are continuous, but there are, in general, dis-continuities in the velocities at the observation times.

Numerical Performance

These planar tracking algorithms have been implemented as experimental Fortranprograms. These implementations have been tested on both idealized and realistic ship tracks.

17
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Figure 1 shows the performance of these algorithms on a realistic ship track won-
sisting of 17 observations. Covariance matrix information here is depicted in terms of a
corresponding "t-wo-sigma ellipse," a level curve of the (Bivariate Normal) probability
density function which contains 86% of the probability mass of the random variable in
question.

Figure 2 shows the comparative sizes of the Kalman filter's and Bayesian smoother's
86% containment ellipses for some representative previous positions for this same ship
track. The smaller size of the smoother's containment ellipses is significant in the
observationto-track association problem for out-of-sequence observations, as explained
earlier.

Figure 3 is a listing of the Fortran program that generated the results in Figs. 1 and
2. Execution time on a CDC 3800 computer was 2 s for this example. This is just an
experimental program, but it gives a rough indication of what is involved in the imple-
mentation of these tracking algorithms.

Figure 4 shows the tracking algorithms' performance on an idealized track. In this
case the true track is displayed to show the tracking accuracy.

S6% POSITION CONTAIN- N
MENT ELLIPSE FOR LAST

/ OSER'*TtON-ELLIPSES
FOR OTHER OBSERVATIONS /

( | ~~~~~~NOT SHOWN. BMUT .10

SIMILAR. _ _ FILTER S tANO SuOOTHER'S)
66% CONTAINIENT ELLIPSE
FOR CURRENT POSITION AT
LAST OBSERVATION TIME-
OTHER POSITION ELLIPSES
NOT SHOWN.

DATA:

KALMAN
FILTER:

(I POINT UPDATING I

BAYESIAN
SMOOTHER:

-tW-46-V, SEQUENCE OF OBSERVED
POSITIONS

- - SEOUENCE OF CURRENT
POSITION ESTIMATES AT
OBSERVATION TIMES

SMOOTHED TRACK AT
LAST OBSERVATION TIME

Fig. 1 -Perfonnance of recurive tracking algorithns on realistic ship track (true track not shown)
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, -e

SO HOURS SEFORE
CURRENT TIME

-10 -5 

AL- -ALN FILTER'S 56%
.- __5 \ _POSITION CONTAINMENT

-5 .(o.ELLIPSES AT PREVIOUS TIWES.
-- _- 49 HOURS BFORE - SBAYESIAN SMOOTHER'S 86%

__CURRENT TBFR CONTAT ENT ELLIPSES AT
-10 CURRENT TIME FOkPREVIOUS POSITIONS.

Fig. 2-Containment euipses at last obsvation time for previou position on realistic ship track

TRACKING ON A SPHERE: GEOGRAPHICAL COORDINATES

The ship tracking algorithms developed in the preceding section can be extended to
include the effects of earth curvature if it is assumed that this curvature is negligible
within a ship's position sigma ellipse generated by the filter or the smoother. In this
case, the ship's motion can continually be approximated by Eqs. (4) and (5) in local
rectangular coordinates. Although it has been found convenient for some other tracking
algorithms of this type to keep these local x, y coordinates aligned with the estimated
velocity vector for reasons of symmetry, it seems simpler here to keep them algned with
lc.al north because the motion and observation models are fully two-dimensional anyway.
This section contains an extension of the planar filtering and smoothing algorithms to
tracking on a sphere when a ship's location is described in geographical latitude and longi-
tude coordinates. Alternate algorithms are developed in the following section for tracking
on a sphere in rectilinear coordinates, which have certain computational advantages.

Track Generation

The basic procedure using the recursive filter is to perform the track propagation step
with dead reckoning along a great-circle path using the estimated average velocity. Track
updating is accomplished by first establishing a rectangular coordinate system centered at
the current propagated position and aligned with local north, then updating as in the sec-
tion "Tracking of Planar Motion," and finally computing the latitude and longitude of the
updated position. Between successive observations, say at times tj and t1, , the details of
this procedure are as follows.

19
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c
C KAL'IAN. FILTER :;hTH AVAPTIVE CRIVIrtG t;CiSE
C

r.l-IFNS1ax Tt9913,XX99S)sYY'?91g1.X(,C9993.Y51999).PAX(999),AX(999)
D'IKENZI^N AYt999) bPXY( oo5 } PYyt {r':5ql AhXl',' jl *,ARAY 5991 sAriyy(z999 )
t)i:ENSIdOt St1AJ(999),S:;';i.(,99).oTH(999)

C READ PARA;.:ETEK VALULS
C
C u Utf'jiR OF Of.TECTIONS l= t.O. OF DATA CARDS)
C VELVAR = P2;tk SPEED VARIANCE

READ 5071,1 1 VELVAR
5%71 FCA:4AT(13qFl9-.5)

C RFAD (A.I4r STGR7_3 ,A(A FOR EACH DETECTIC?4
C
C T s Tll;E
C AAAY a ORSFRVFI0 LOCATIC.X. CCOU;DIt.AIES
C S.-:A * SF-If:AJOR AXIS CF 86 :LICE..T CCt.TAI;4:;EtT ELLIPZSE
C FOR OSERVATIOtt
C 51;1 * S. I,-'IC:OR AXlb OF C; ELLIPSE
C THT * URIEINTATIQ:I UF SE::I:'AJZi; AXIS (UEGkEES CL3Ch'."ISE
C Fhet. Y-AXIS)
C

5U,7n FCRP.ATlhFl'.4)
DO 9 I1SIO
fiAD SG70§gT( 1} AX(I} AYt I ) S';Ao@ 11*THIT
TH.T=THT/57.3

c
c ltlTlALIZAT.tJIf
c

XX C 1 IsAX( 1)
YY(jj=AYf(I
PXXI)1APXX(l)
PXY( 1 3)sAXY( 1)
PYY11 3AIYYC1)
CNFAXl(I)+PYYC13
C2zSCRT((PXX(l)-PYYl))i"2,4.-PXY(1)s* 2 )
Clu.5*(CC+C2)
C2mCl-C2
S'.lAj(lu2.*.tjrRT(Cj
S6.INC 1u)2.*SCRT(C2)THI1)=57.3*ATA:;((PxXt1)-Cl)/PAYC 13+9u.

OYYu'3.
uso.
va u.
PXLL,=.
PXVmu.
PYtum.
PYV=',*
PU.J .5*'ELVAR
PSv.-.r

Fig. 3-Program Maing
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t i'~~~~~~VV=FtUv C e romf ~~~~~~CX'4, J.\!
i ~~~~CYY-0.

CC PrCJR:)IVr ST-..IC 'EC'.i rTiATIbe aI 0 PY
t ~~~C

[.X=1XC 13LX=AXC I)

: XX=ARXX(l)
.XY=ARXYC 1I
RYY=ARYYC I)

i ~~~~~TA-v=-T(l)-T(1-1I
XPAR=XX(C-1I I+UTAL

z YrPAR=YY i i-i )+VTAuJ
r.XX.PXXI 1-1 )+2.*PXUt'T;^b+pvsTvtzs7f)XXrTtU

{ fi~~~rXY=PXY(1-1 )+(PXV+PeJ~IiThv,+PtVt:TAt)'IA~j+JXN'TAU
*iYY=PYY I )+2.*PVV*TAU+PVV*TAU*TA..+(ZYY*TAU
GXU=PXU+PUU*TAT
rXV=PXV+PU.V*TA-
!,Y-jpYP+poJV*TAu
CfYV=PYV+PVV*TAU
nET= (CXX+RXX l',YY+RYV 3-I (.XYy+-.XY) * Y2
HXX= (GYY+RYYI /)ET
HXY=-(GXY+RXY,,DET
PYY=(GAX+RXX)/fIFT

t ~~~~r'XX( I )=fiXX-GXX; GXX*I'XA-?.4if XXGXY",H^y-t>XY*GXyliiyy
PAY( C =(rXY-.CXX*GXY*HXX - (C..'XCG; f+;-,At* Y)- ;.IiAY-GXY*GYY'.hYY
>Ny'Y( I = YY-iYY-GxYY*HYY -. EfrY6-Yit1X - (XNtCXY*HXX
C1=PXX 3+oYYC 1 )
C2=SORT(fPXXCl)-P\YYI,;)3'2+&.1-PX)C()>k 2 )
Cl=.5*(Cl+C2)
C2=CI-C2

.I.AJC I Iz2.eSorCTC1j
;'iN( 1)=2.*-5(.'!l(C2J
N I=57.tvATt.I (CPAx( I I-*1 3/PAY i 11+9v.

P^^=fA;J-iA:rfX. -*HXA-1 t. trl-. .+.;-;; S.!A) )-C.A f *G v'ti HN 
PA t=vX rx\ r).V (rXNQ|A ( i'-VVY+t6A V TX *HFXY V-j3 *rY\\fi HYY

t~~~~~~:Y t~=fYU-GvY~*fiYb;HyY-r-{fY Y fAt.+f, AYtfirVt!)-HA Y-CX'v*fiXU*HXX;

i ~~~~~~PYV =f,YV-,-y Y*f;)'!Hf '- 4 G N Y V .' - *rwiYV ) {'HXS Y-fiX YfICXV*.4xX

PUJ=PUU-GXt) *GXZJ*-HX A-2 * `G< fi#-'t, HA Y-fiYv*GYU'kfy Y

OUV =PUV-,XU*GX f 14.;-1iXI! r: +iY: It: r.,1. 3 HXY-GYU *GYV*HYY
~J'JV PVV-fXV*GX% HAXS-2 4fi - I v- *H.-N i'y V *fY\VIlly Y

PF = rXX *RVY-RX YORXY
IFIXX=RYY/nET
iXY=-RXY/DFT
IIYY=RXX/DET
XXI 3=A'AR+CPXX(I ' +f'X CI

s ~~~~~~~XX( =A Xt }+{F IP ) 'HNN+P;.' t I N f!-Y\'}<:( it.-? I

s fYX~~~~~Ml IY ='nR+ (PXY ( I )<'li4X X+DN 't t I 11 F!X; I * -X-x r-/PF 

YYI =YYC + ! PXY I4 t pXY+Fp WYI I IV*CLy -ycARl
1214. C I' t:, vnXX+rYt yl 12iC Z,.-.'Ft8) +1 P.!oHXY+PYU'iYY3l*CZY-YBAAR3
V=,+(.d*vFIXX+uYsI*HXY3i ILA.-.XFAlJŽ+CPXV*HXY+zYV*Hyy)*(ZY-Y5AR3

c UPC;ATE Chlvi-:;C C; EnTl;'Ali

g ol=FLlsATt o

F4g. 9-Progmm litn (continued)
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CXY=CXY+, ( {ZX-^,;;A§' , ;-Y80F:)-G."Y-RXY!/T tsU-CY /;jl
CYI'r-CYY+C CZ Y-YRAMAI *;-fYY-RYY3/TAQ-CYY)/IR1
RK.CXY4( tU*U+V*V I/.;/V
DXX=CXX
CYY&CYY
IF(DXX.LT.*.1 I)XX=u.
IF(DYY.LT.-..I PYY==.
IFCRK.GT.DXX+DYY) RKs- XX4Z|YY
TFRK-.lT.-P.XX-7,YY3 RK=-nAX-rYY
OXXu.5S*CcXX+flYY+RK*(LX.:-, Vt-V)/CU*.4+Vl-V)3
t3XY=RK,4U*V/ 1U*J+V§V V

I OYY=OXX-RiO I b'i,-V:V/
C
F- OUTP...r

C I r OASERVATION; Il, X
C T = TIl-t'
C CXXI YYI a CURR.NT POSITIC1 4 FaTl'lA.iF IN X-Y COOni:.ATES
F- SMAJ r SEVI'AJOR AXIS iJF 86 IVEINCE"T C,:,NTAltI*:EfiT ELLIf SE FC4R
C CURRENT POS117;.
C SMIl * SEF4I''IN'Ok AXIS UF C(NTAI?.'I.T ELLIPSE
C TH = ORIENTATIOh Si SE:-Il; .JOk AXIS ClD-f. CL(UCKv.ISE FRO;; Y-AXIS)
C

DO 3 1=19N
PRINT 7@T( ),XC 3AJI ,141:Cl) TH(lI

7 FOR-4AT(2?,Xo3Fl .2,%XrL.2/)
PRINT 8

Q FORMATI20X///3
C
C TRACK S H.vThER
C

XSCN3=XXCN)

DEN= T (.3-TC 13
OXX*OXX+PJ:J*rEI;
CXY=OXY+PLA' -DE':

OC. 2 K=1t9..:
I a I-K
TAi.sTl 1+1-TC I1
P1r'XXC I)
P2 XYtI 
P3=PYY I )
nE.4=CF1+OXX*Tt.UI()X P tP>..YyelA--le',+;yrlAt)<2
HXX=PlCP3+QYYaTAU3-P?*(CP7+XY*TAL)3
HX'=P2*CP1+OXY*TAJ)-U3 ,(7?+%JXYs'*AJ;I
HYX)P2* Cp3+(,YY*TAU -F-.-:'(P2+L;XYcT,.U3
HYY=P3* I C +OXX: TAi) -r- .? (P?+tX4'" TA J)
XS; I .=X>, I 3+CHX;:* I+1 )-XAAi I I Z--IAU) +tl*XY (YS I+1)-YY( i)-I 3*TAt. I/

1DE"A

lr)E;'
SXA=PXX(1:3

CS=SXX+SYY
C2- 3R7C I-'XX-.5YY) C2.+4.*.AYt 2)
(--=.5a (Cs+C2o

F49 S-Prgm Hging (continued)
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11 51 |~~~~S,,J (N J\l 2. ->& T C C I I 

IS Nh ( I2.S iL.Fs T (cu i
[~~~~~~~~~~~ Hit INIrs ,7. 3* n I~ A ,s x x-C 1 1 /S~XY) +C

1. DO 5 L=2 t:

TAUsCT i+11-T(I
! ~~~~Pl:FX..C 13

P2mAYMI)
P3=PYYt( I
Al =P1+C:X*TAU
A2=P2+L.iY*TAU
A3zP3+CVYY;TAU

H1=A3/UWLT
H2=-A2/1!ET
H3=Al/[,r.T
BlPPl*H1+P2t-h2
e2=Plill7+P?*H3
F3-P2T*l+PF3tH2
"4=P24rh7+l3*t13
D1*SXX-Al
.n25SXV-A2
D3SYY-A3

r4=63*D?+i44"D3
sXX=Pl+C!*9l+r2*Al
SXY=P2+F 141U 3+E42 *B4
:byY=P3+E3*b3+E4*d4
C1=SXX+6YY

I c~~~~~~~(2-BOR.; t (Z0X--j y}; 2+4 - -r 12 11I C1=.5*I(.l+C23'
, C2 =Cl1-C?

S:-/JC I =2.<5SORT(C13
i~~~~~~~~; I> " I 1=2. 1--: ioi; T K2)

j 4~~~~~~ TF. (Il-') .- A:.t'-C. I -A Y I+-.

................. r OUTPUT

j...........C I = 'Sf-iRVATlcal IItN .l.x
C T TlI.t
!- . .......... r YS) = o400TlHEll P0.Il;:.: 1.; 4-N CfOnkl'A[Ez'

- S;~~%"'AJ = 5F-`WAJCMW AXla~ 'F' 66>P(, CC,':TAlW;4EAt; ELLIPSE FOR
51:o0THEDl POSIT I0:'

C SVVIE S'.'I)..iJNOks AXIb _F C-;..Tb ':.E,;T ELLII-SE
i- Tri = cR!uAT;TATIoC! (-iF 5E .f *J ... t AjS iUrCG. CLUCr-,ISL FihO4 Y-AXIS)

UO 4 L=1.;.
:* ,. PPRINT 7*Tt I IX.)t I IYS * 1 * a- It (I1 TH I 

I FF? 8-ProDg litng (continued)

28

1.
r
i
I
1�I

i :

N

L



WARREN W. WILLMAN

INITIAL OBSERVATION AND
POSITION ESTIMATE.

SIZE OF 86% POSITION
CONTAINMENT ELLIPSES CCIRCLES)
FOR ALL OBSERVATIONS-ACTUAL
OBSERVATION ERROR VALUES WERE
ALL ZERO.

-X )( POSITION OBSERVATIONS
(EQUALLY SPACED IN TIME)

TRUE TRACK

W- - -
17 la

SEQUENCE OF CURRENT
POSITION ESTIMATES AT
OBSERVATION TIMES - NUMBERED
IN ORDER (KALMAN FILTER)

SMOOTHED TRACK NOT SHOWN.

Fig. 4-Performance of recursive ship tracking algorithms on idealized track
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* Beginning at time tt with the y axis oriented toward local north and the x axis
toward local east, let 0j and ai be the latitude and longitude of the estimated position at
that time. In these local rectangular coordinates, the velocity estimates Uis, 6i, the (4 X 4)
state covariance matrix Pi, and the maneuvering matrix estimate Oi are also available. For
convenience here, denote south latitudes and west longitudes as negative.

* Propagating the ship's position by dead reckoning to that at the time tj, of the
next observation, adopt a new coordinate system with origin At that position (OiI 4 '+ 1)
with y' and x' aligned along local north and east. These parameters are specified by the
equations

= t 1+ I - ti (48)

I = (49)

ft
'Y = T; Re =earth radius

sin 6

cos 6

= sin- [sin Oi cos7 + Ul Cos S
IS ~~f

IlI 2w 2

ai sin7

f Cos fi+l

cos 0i cos y - 2 sin 4i sin 7f

(50)

(51)

(52)

cos 4i.1+

Take Be[0, 211)

{Zi+1 = hi + 6

if {i+1 > ar,{i+l = ji+1 - 27r. }
(53)

* Compute

Vi+ 1 =
Di cost i cos 7 - f sin O' sin y

f cos + 1
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= cosfj
;+ I Ui O i+l

These are the values of 0, u' at time t,+1 in local rectangular coordinates.

* Define the rotation matrix Oi+I as

1i+ = I V~j+ 1 + 1411+1 I U1V1... - VjZ4,1b+1 - uiAv5.; &jij + u+]

Oj~j f2 I - I 

i IU - ij+l I +i

f I f If 1
= -- - - -1 p- - ---ii I D iI I Ji+

* Compute M54+1 from covariance propagation equation for rectangular coordinates,
Eqs. (30) through (34) and (12) through (21) for this motion model.

* Rotate to updated coordinates:

Oi= _+1 

Qi+l = 0i+ 1oi0l 4. 1

Xi+1 =

Yi+l = 0.

_i -I OT+ 1 I°

Mj + 1T I eT

values of 4, x, y
at time t, +1 in local
coordinates

26
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* Compute with Eqs. (22) through (24) and (27) through (34)

j 4l

yi+i

ui+1

i+1

Pi+I

estimated values at time ti++I in
F local rectangular coordinates

Oi+ 1.J 

* Compute latitude and longitude of (updated) position estimate at time t'++1

+ yi+1
Oi+l = *i+l Re

Oi+l = ;i+ 1 + R. coo 6i+ 1 -

- End of Procedure -

Track Smoothing

If the preceding track generation procedure has been followed through the Nth ob-
servation time, there are N + 1 observation times ti, i = 0, ... , N, with corresponding
Kalman filter estimates of latitude and longitude O; and Ai. The Bayesian smoother can
be implemented in this context by computing "smoothed" offsets di to these position
estimates, and their corremponding error covariance matrices Ki. These offsets are 2-vectors
in linear distance units aligned with local north (i.e., the unit vector ei points north at
0j, *i). These offset and covariance matrices can be computed recursively as follows.

* Denote the current (at time t*) positive semidefinite estimate of Q by QN and
the estimate of the velocity vector

by UN. These variables are all expressed in the local rectangular coordinate frame of observa-
tion time tN.

27
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* Set dN = °. KN =PN

* Loop through the following steps for i = N - 1, N - 2, ... ,O.

1. Rotate the offset vector di,, and its error covariance matrix K 4j. to the local
coordinate frame at Oi, 4/i by computing

T
a; = O,+ldi+

! and
L; = ,TJKj+loj+

where

a; is the rotated offset vector

Li is the rotated (2X 2) covariance matrix

ii+i is the rotation matrix defined in the previous subsection for the Kalman
filter (which could also be obtained from 0;. q fi4i+1' qi+1 to within the
degree of approximation adopted here).

* 2. Rotate the velocity vector ui+l to the ith local coordinate frame by computing

ui = OI,,+ 1 -

Compute fi+j and Vij+ from Oi and 4; with Eqs. (48) through ('3), except that iu^ and
Di are replaced by the components of ui.

3. Let

Re cos Oi+1(6i+1 - 'i+l)
bi - - - - - - - - - - - - - -

ROi - Oi+1) J

4. Compute

T
M + I= Pi + Qir;, where Qi =aQ., 1Q 4+1 i+l and 'r = tj + - tj.

5. Compute

= --1di = PiM1 +I(ai - tbi)

. and

. Or;~~~~~~K = Pi + PjMi+I(Li-Mi+I)Mi+I~

28
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which are the offset and the smoother's corresponding error covariance matrix for the ship
position at the ith observation time, expressed in the ith local coordinate frame. The
component-by-component details of this computation are not shown here, but are analo-
gous to Eqs. (43) through (47).

- End of Loop -

If desired, the latitude and longitude fj and ij of the smoothed Dosition estimate at
time t1 can be computed as follows.

Re cos

i {i = +i
Re

TRACKING ON A SPHERE: RECTILINEAR COORDINATES

Ship tracking on a sphere is sometimes performed in terms of three-dimensional
coordinates instead of geographical latitude and longitude. The use of such a coordinate
system enables the computational effort to be reduced considerably, largely by the avoid-
ance of trigonometric computations, at the expense of a slight increase in storage require-
ments. This section develops an adaptation of the above track generation and smoothing
algorithms for a spherical earth in these rectilinear coordinates. This particular adapta-
tion circumvents the potential problem of singular covariance matrices.

In this system a target's position on the earth's surface is described by a vector

r= y

whose components are the coordinates of the target's position ir an earth-centered rec-
targular coordinate system. Specifically, the x axis is taken as intersecting the equator
at zero longitude, the y axis as intersecting it at 9C0E and the z axis as aligned along the
North Pole (a right-handed coordinate system). Boldface lower case letters are used here
to denote such 3-vectors.

Motion along a great-circle path is represented by a vector normal to the plane of the
great circle. The magnitude of this vector is the angular speed of the motion and its sense is
such that eastward motion along the equator is represented by a vector aligned with the North
Pole. Hence, the motion of a target at position r and velocity r is represented by a vector

S @= n~~~~~~~11;

such that; = coX r.

29
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The track of a target is generated recursively from a sequence of noisy observations
z1, i = 0, 1 ...., of the target's position r(t,) in the rectilinear coordinate system. Also
given with each observation zi is a symmetric 2 X 2 covariance matrix R. for the compo-
nents of the observation error vector z5 - r(t,) in the directions of local cast and local
north. These components of zi could easily be computed by the usual spherical coordi-
nate formulas from a position report of geocentric latitude and longitude.

WARNING: Because of the earth's oblateness, the geocentric latitude differs from
the more commonly used geodetic latitude (based on the orientation of the local horizon)
by about 10 mi at middle latitudes.

Track Generation

For a particular target, the above-mentioned track generation algorithm can be im-
plemented in this rectilinear coordinate system by computing and storing estimates of r
and A, a 4 X 4 symmetric covariance matrix P for the errors in this estimate, and an esti-
mate of a 2X 2 symmetric driving noise matrix Q after the receipt of each successive ob-
servation. The components of the P and Q matrices refer to the local east and local north
components of the errors in position and velocity and the driving noise. For a time t be-
tween observation times, the target's position is estimated by dead reckoning (along a great
circle path) from its estimated position and velocity at the time ti of the last observation.
Hence, using the circumflex to denote estimated values,

m= ?(ti) cos [(t - t)i(ti)I] + (t Xi) co(ti)l Ut-ti)I'(tII

@~(t) = @(t1 )

If desired, the value of the P matrix can be computed for such an intermediate time as At
is in the section "Tracking of Planar Motion." The x subscripts there correspond to local
east components here, and the y subscripts correspond to local north components.

The item of major importance is the manner in which the estimates of r, X, and Q,
and the covariance matrix P are updated immediately after each observation. We initiate
this process immediately after the initial observation zo by setting

;0 = zo (3 vector)

60 = O (3 vector)

Qo = 0 (2X 2 matrix)

- T - -- T---

I 02 L 0 (4X 4 matrix)

[I 0 a2]

30
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where ;0 denotes R(to), etc., and 02 is an externally specified prior (linear) velocity com-
ponent variance. The general updating step begins immediately after observation time t5
with the estimates ii, 4,i, Q;, and the covariance matrix Pi. The components of the mat-
rices Pi and Qi are denoted for convenience as follows:

I I I 
Pee I Pen I Pee I Pen

' pnI n I Pnn 1, Pi In beli N…-----T Qi -- e-Pi NN I~~IPri 

Symmetric t P.2_ I Pt L\ I q.

where e and n stand for local east and north, respectively. When the next observation
(zi,,, Ri 8) is received at time ti~1 , the following procedure can be used to compute
the updated quantities Vi+1, C)i +1, Qi+1. and Pi+,.

1. Compute the quantity

ai = VY.

It is then possible to express the components of the local east unit vector e and the local
north unit vector n (at location f;) as

ei= i/_a and ni= (-.Vi,)

(ai)

It is not necessary to compute these unit vector components separately, but they are used
in deriving some of the following steps.

2. Compute the local east and local north components, d; and Di, of the estimated
velocity at ti as (4 X . {i) ' ei and (Xi X - ni; this yields

ai =ali - j- (ai~i + fii). (east component)

0:i = ( i ii Pi Re, (north component) .

31
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3. Compute

~ i Y 1

such that

ri+1 = ri cos (rb i) + -h sin (Tbi)Tb in

r = ti+1 - ti.

This is position propagation by dead reckoning along a great-circle path. As a simplifying
approximation, one could compute instead

(= i (12- 2 i + i X -

4. Compute the new value

aj+ = 1 + -2+1

5. Compute the new local east and local north velocity components as in step 2,
giving

'Ui+l = ai+ji yj F,+- (OA~i ;-l iii+1)

8+l= (- i+1j- 1; if) Re 

6. Compute the rotation matrix Oi+I such that

0-i+1 = 2b;

L l + j -, …~~~~~~~~~~~~~~~~~~I…Dilyi+i + fiui+1 I djtjL~+1 - DiXi+l
I- - - - - - - I - - - -

I +-O'ii- i~u
1 i Dv+1 Jiri1 
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7. Compute a positive semidefinite approximation to Qj; denote it by

Iq q 

One reasonable method of doing this is described in the section "sTracking of Planar
Motion."

8. Compute the symmetric 4 X 4 matrix Msuch that

cm e.n I e imen

si mnn I m. ' m

Symmetric 5 ' ,, P -

_ uI~~' Pnn

and

m = Pec + 2pej2 + p..r2 + q* T

men = Pen + (Peh +Pn,)T + Peht2 + qenT

mnn = Pnn + 2pnT + PnnT2 + q* T

me. = Pei + PeeT

men = Pen + PihfT

mne = Pne + PenT

eNA= ,Pnn + PAirT.

9. Compute the rotated matrices

0 0i+l ° ±..i+ ..--- (4X 4)

oI 0i+ L ° I

and

Ql= °i~Q 1O.T+i - (2X 2)

Denote their components with analogous subscripts.
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10. Compute the local east and local north component ee and en of the residual
vector

-eZ

by taking dot products with the unit vectors ea+j and n,+j (not shown) used in step 2,
which gives

ce = 01i (i+IeyR -Yi+lex)

and

n a;, 1R, (-exsZi+l 1+j -eyIYi+j1 i 1+ +ezai+).

11. Compute the new state covariance matrix Pi+, as

Pee " P. I PIe I Pen
--r - -T -- 1'-

Pen I Pnn , I Pn I Pn
_ _ J _ 1 _ _-- - --_ 

I II
Pei I Pne I Pee I PeN

- - -…4 - - - 4 - - - I - - -

P.n m Pnn I PA, I Pnnh

= Mi+l -

i+1

I men

--- T.---
men ,i mn

- - -T-- - -
Mei I Mni
_- - -I--

-MeA I mnn

I I~ ~ ~~ I I I/Mee I Men s Mee I men I m i men
X ------ - Rj I --- t---------

men : mnn men : mnn 1 Mni , mnn

12. Compute Kalman filter correction terms 6 in local east and local north
coordinates:

St

- - -

Sn6i

Sit

I Pen I Penf1
- -I- - I

I 
Pen I Pnn
P re-n --
Pei I_ Pni-

Pzni I Pnn
I 

RI f-

i+1
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13. Use the Kalman filter correction terms to compute the new estimates i
and 4+i' the components of which are

i i+= a [Yi1lC + R (Xi+1ii+16n)] + Xi+

* Yi~l ai~l [Xj~l~e Re Gi~lzi~lfin)] +a1 Re
-- ii + 1 = R Se +G, ZO+F- L e, 6i~~+1n

Yi+1 = j+ Rea;3i R -e

-= 1+ai+l
Z =+ an+-6.+

t Re

f ~~Also, it might be wise to renormalize Fj 1SO that its magnitude is Re to peeta c

g cumulation Or roundoReaerroIs.

= i~+ i +I 1 + - -------Imnl -mn.

f ~~~~~~~~-End of Update Cycle-

t ~~Simplifying Approximations

i It might be possible to reduce the computation required to implement this tracking
i ~~algorithm with little sacrifice in accuracy by adopting some approximations. Ii' addition

to that mentioned in step 3 for generatings. from i; and 4, another likely approxima-
1 tion is to neglect the rotation of local east and local north between successive observations.

With this approach it is possible to omit steps 1) 2, 6, and 9 in the update cycle by the
Use of M5. 1 = M1 ,1 in step 11 and Q M+e = Qj in step 14.

I

I
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Track Smoothing

The basic approach here is the same as in pages 27 to 29. The smoother is imple-
mentAd as a backward recursion to compute offsets di to the Kalman filter position esti-
mates ii and also the smoothed error covariance matrices K; corresponding to the di. The
offsets are computed in local east and north coordinates; thus the di are 2-vectors and the
Ki are 2 X 2 matrices. If smoothing is to take place immediately after time 'N, it is as-
sumed that the Kalman filter outputs 6N' QN, F, and Pi, i = 0, ..., N, are all available.
The procedure can be implemented as described below.

* Set

dN = 0

KN = PN

* Loop through the following steps for i = N - 1, N - 2, ... , 0.

1. Follow steps I through 5 of the filter update cycle of the preceding subsection,
except with Z; replaced by (BN to compute 0,,+I x,,1, zi+ I,,1.e; and ni.

2. Rotate the offset vector di+, and covariance matrix Ki,, to the ith local Carte-
sian coordinate frame:

aj = OT7 d+1 , (offset 2-vector)

Li = OGT+IK,+1 O+1 (2X 2 covariance matrix) .

3. Compute the local east and north components of iil - Fj+j in the ith coordi-
nate frame:

Ee = (rr+1 - r,+1 ) * e;

en ~ (ii+j - Fi+j3 * ni -

4. Compute

Mi+l = Pi + Qiri 
where

Qi= =TQi+1°i+l

Tj = tj + - ti .

36
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5. ComputL the new offset and covariance matrix:

d1P.M + ai)

K1 = Pi + Pi~--j(Li-Wi+j)--i

At this point, one could -End of Loop-
; ~~~At this point, one could also compute the smoothed position vectors ij as

;r = i + [ei n, ] di,* S~~~~~~~~~~~~~T 
where

[ei Ini] denotesa3X2matrix.

37
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Appendix A

GENERAL RECURSWE FILTER AND SMOOTHING ALGORITHMS

Suppose- that x is a state vector describing a ship's motion in the context of Eqs. (1),
(2), and (3), and that the corresponding Kalman filter is being used to track the ship.
The conditional moments i? and K can be computed recursively from the data by means
of the following equations.

Forward Equations (Kalman Filter for Eqs. (1) Through (3))

x = Fx + w

i = PP + PFT + Q
} between observations

P(tt) = [Pl(t) + Hi Ri NHi]; P(to) = MO

= P(tij) - HfT[H1P(t7)HjT + sd lHjP(ti )

i(tt) = i(tj) + P(tj+)HjTR 71 [zi - Hj*(tj-)]; i(tQ) =

at
observation
time t;

Fo.}

For the "flat prior" case, use P- 1(t-) = 0 in Eq. (A3a).

Backward Equations (Bayesian Smoother for Eqs. (1) Through (3))

x = F* + w

i = FP + PFT + Q }
between observations

P(tj) = [P'1 (t; ) - H. Rj Hj]

= P(t; ) + P(t4)HjT[R5 - HjP(t+)HRT]-'HP(ti*)

*(t;) = x(tj ) - P(tj)HfTR1l[z1 - Hix(tt)]

(A5)

(A6)

}

(A7a)

at
observation
time t,

(A7b)

(A8)
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at =ij(T, t) F-q + w + QP- [((T, t - xl; ?(T, T)=(T (A9)

i(T. t) = [F + QP']K(T, t) + K(T, t)IFT + P 1 Ql - Q; always.

K(T, T) = PiT) (A1O)

The Kalman filter statistics x(t) and P(t) are computed using only the forward equations
from time to to time t. The moments i (T, t) and K(T. t), for T > t, are computed by
first obtaining X(T) and P(T) using the forward equations from time to to time T. Then i
these values are used as boundary conditions at time T for . - ackward equations, which
are then used recursively from time T to time t to obtain i7(2, r) and K(2, t).

These results are developed in greater detail in Bryson and Ho.*

A.E EBryson and Y. C. Ho, Applied Optimal Control, Blaisdell, Waltham, Ma., -. 1968.
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* I Appendix B

INCLUSION OF OCCASIONAL VELOCrrY OBSERVATIONS

In the context of the planar motion of the section `tacking of Planar Motion,"
I suppose that a noisy, independent measurement of the ship's velocity is obtained at ob-
* servation time t4 in addition to the position measurement zi. We assume that this velocity

measurement can be adequately described as

i S(ti) +o (Bi)

where

= measured velocity (2-vector)

s = actual instantaneous velocity in x-y coordinates (2-vector)

, I ,i = zero-mean, Bivariate Normal, random variable with covariance matrix E:.

Unfortunately, the ship motion model (pages 4 and 5) is an inadequate approximation to
the actual motion for the purpose of dealing with such velocity observations because an
instantaneous velocity cannot be defined for the Brownian motion component. The
model can be refined for this purpose, however, by specifying a probability distribution
for the difference between the average velocity and the observed, instantaneous velocity.
One convenient way of doing this is to assume that these differences are statistically in-
dependent for different observation times and distributed with a zero-mean Bivariate
Normal distribution with covariance matrix Di at observation time ti. As a default proce-
dure to avoid specifying Di externally, it might be reasonable to use

t ° t qI y qyy

where qxxt q' and q are as defined in Eqs. (30) through (34). This procedure is based
on matching the variances of the observed fluctuations in position.

With this refinement, it follows from Eqs. (4) and (Bi) that the velocity measurement
rj can be expressed as

40i [ U ] ( [ u ] ) (B2)
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the latter term in parentheses being a Bivariate Normal random vanable with mean zero
and covariance matrix (Li + Di). Therefore, the composite observation vector

can be regarded as a noisy observation of the state vector

at time t in the context of Appendix A. The (4 X 4) covariance matrix of the observa-
tion noise i7i in this context is

-I °

o ,£j+Di1

Specializing the results of Appendix A to this particular case shows that the track
generation procedure (pages 6 to 14) applies here also, except that Eqs. (22) through (24)
are replaced respectively by the following three equations whenever a velocity measure-
ment lf+, is obtained at time ti+,:

__= F__.. + r __ + _ 1____ R-1

1+1~~~~~~+

_Yi~l_ _9_ Uj _PxyI PYY_ i+l

+[ 'F XUfx__ (Xi+, +Di+,)- (rj_,

I PYV l

zx(i + 1) 2- iX -
- - --- --- TOiJ

1Z(i + 1) - y; - tv;

L6iJ

41

(B3)

ii

i



£

5-

'7.-

WARREN W. WILLMAN -
M

iii+ ii PX I+
- - - = - + -I Yu-

I P a w I ~ P au I 
+ L - - - - (zj+

-pu P. p-i+1

*zi(i + 1) - xi - T1jI
Zy + 1) y-nIJ

1 +Di+,) (ri+l/ I; + -1
Pi+1 =M -MM+ -- - - - - - - - M.

°I +1 +D, 1 J/.

The M matrix components are as defined in Eqs. (12) through (21). Since the track
propagation steps are unchanged, there are no additional modifications for velocity ob-
servations in the spherical track propagation algorithms because the track updating steps
are performed in Cartesian coordinates there also.

The results of Appendix A can also be specialized to this case for track smoothing.
It would be necessary to retain all four components of the state vector for this purpose
because velocity observations must be taken directly into account. This would be a dras-
tic departure from the other smoothing algorithms developed in this report, which are
based on a two-component, position-only, state vector approximation. Therefore the de-
tails of this four-dimensional smoother are not developed here. A two-dimensional
smoother can always be used, anyway, by ignoring the velocity measurements.

12
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Appendix C

DEVELOPMENT OF CONSTRAINT ON MANEUVERING MATRIX ESTIMATE

A procedure is described in Eqs. (30) through (34) for modifying the estimates
Is=(i). 4xy(i), and jyy(i) of the maneuvering matrix components to ensure that the re-
sulting estimates form a positive semidefinite matrix whose principal axes are aligned with
the current estimate

of the average velocity vector. The justification for this particular procedure is discussed
below.

Suppose that the estimated average velocity vector is as shown in Fig. C1, where the
i and c axes are in-track and cross-track coordinates. From this figure, the formulas for
rotation of coordinates give

of sin 0 I cos 

from which

-2

cos20- =2 + (e)

-2
si2 Visin20 - 2 +2' (C2)

and

sin0 cos0 = aU ioj (C3)

For a maneuvering noise covariance matrix which has the diagonal form

43
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C

,,~ I

Fig. Cl-Coordinate rotation

F l qc (C4

in the i, c coordinate system, the corresponding covariance matrix in x, y coordinates is,
by standard formulas for linear coordinate transformations,

r, 1cos 2 0 + qc sin2 0 (q; - q,) sin 0 cos 0 1
_I- _____ _I______- (C5
(q, - qc) sin 0 cos 0 q, sin2 0 + qC cos2 0

If this is to be equal to an observed symmetric matrix

qX 'I xyY

then

c sxy=ics .s-~iin; +~

Therefore,

44
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sin 0 -n

qi = 4YY - C-OS qXY =- 4xx + 0o
xy Asin 0 cos0

q, = 4= +
sin - = - sin 0
08 o qxy =x qyy -0 8~ ' sxy

from which we get

qi = I xx + 4yy + 4X y1q 2 1xx sin 0 cos

qc 21 + '4yy -Z---" 

(C6)

(C7)

For arbitrary qy, q4xy, and qy Eqs. (Cl) through (C3) can be used in modifying Eqs.
(C6) and (C7) as follows so that the diagonal matrix (C4) is always positive semidefinite:

1
qi = 2i '+)')

qc = 2 U - X) I

where

(C8)

if qxy(Uj?+ LZ)

q2 4(U + V2)ilivi

VXy I - otherwise .
a 5V1

Using Eqs. (C1) through (C3) in covariance matrix (C5) for this
coordinates gives

modified matrix in x, y
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and

and

I

II

I

I

i

I
I
I
I

X= (C9)

A'Aa . , -.-

M '_-, -z-,
M AhA�.� � .

t = nIMT_ {O 1 OXX + qVY))
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+ 

'9xy g? oV 1

o = 12 -2 I 

why = 2 + a .ar d b

I ~~~where and 1X are defined by Eqs. (C8) and (C9).
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